Single Output Isolated 25-Watt DC/DC Converters

FEATURES

- Cost effective small footprint DC/DC converter, ideal for high current applications
- Industry standard 0.96" x 1.1" x 0.33" open frame package and pinout
- Input voltage range of 36-75 Vdc
- 3.3V, 5V, or 12Vdc fixed output voltages
- Isolation up to 2250 VDC (basic)
- Up to 25 Watts total output power with extensive self-protection shutdown features
- High efficiency synchronous rectifier forward topology up to 91%
- Stable operation with no required external components
- Usable -40 to 85°C temperature range (with derating)
- Certified to UL 62368-1, CAN/CSA C22.2 No. 62368-1-14, IEC 62368-1:2014 safety approvals

Output (V)	Current (A)	Nominal Input (V)
3.3	7.5	48
5	5	48
12	2.1	48

PRODUCT OVERVIEW

Featuring a full 25 Watt output in one square inch of board area, the UEI25 series isolated DC/DC converter family offers efficient regulated DC power for printed circuit board mounting. The 0.96" x 1.1" x 0.33" (24.4 x 27.9 x 8.4 mm) converter accepts a 2:1 input voltage range of 36 to 75 Volts DC, ideal for telecom equipment. The industry-standard pinout fits larger 1" x 2" converters. The fixed output voltage is tightly regulated. Applications include small instruments, area-limited microcontrollers, data communications equipment, remote sensor systems, telephone equipment, vehicle and portable electronics.

The UEI25 series includes full magnetic and optical isolation with Basic protection up to 2250 Volts DC. For powering digital systems, the outputs offer fast settling to step transients and will accept higher

capacitive loads. Excellent ripple and noise specifications assure compatibility to noise-susceptible circuits. For systems requiring controlled startup/shutdown, an external remote On/Off control may use a switch, transistor or digital logic.

A wealth of self-protection features avoid both converter and external circuit faults. These include input undervoltage lockout and overtemperature shutdown. The outputs current limit using the "hiccup" autorestart technique and the outputs are shortcircuit protected. Additional features include output overvoltage and reverse conduction elimination. The high efficiency offers minimal heat buildup and "no fan" operation.

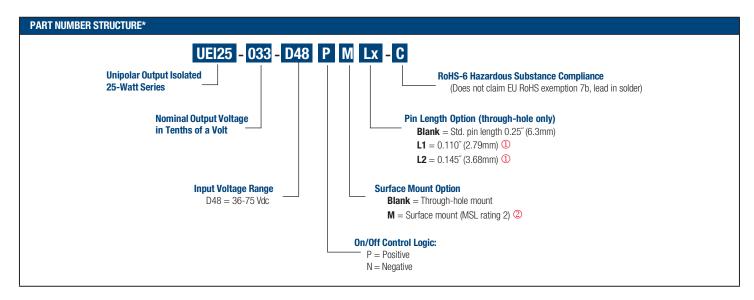


Figure 1. Connection Diagram Typical topology is shown. Murata Power Solutions recommends an external fuse.

UEI25 Series

Single Output Isolated 25-Watt DC/DC Converters

PERFORMANCE SPEC	IFICAT	IONS S	UMMA	RY AND (ORDERIN	IG GUIDE (D 3									
				Outp	out				Inj	out						
				R/N (m	ıVp-p)	Regulation	on (Max.)			lin,	lin,	Effici	ency	F	ackage, C75	
	Vout	lout (A,	Total Power					Vin Nom.	Range	min. Ioad	full load					
Root Models ①	(V)	max)	(W)	Тур.	Max.	Line	Load	(V)	(V)	(mA)	(A)	Min.	Тур.	Case (inches)	Case (mm)	Pinout
UEI25-033-D48 ④	3.3	7.5	25	50	80	±0.1%	±0.2%	48	36-75	75	0.58	87.0%	89.5%	0.96x1.1x0.33	24.4x27.9x8.4	P85
UEI25-050-D48	5	5	25	50	80	±0.1%	±0.2%	48	36-75	30	0.57	89.0%	91%	0.96x1.1x0.33	24.4x27.9x8.4	P85
UEI25-120-D48	12	2.1	25.2	95	120	±0.1%	±0.1%	48	36-75	20	0.6	86.0%	87.5%	0.96x1.1x0.33	24.4x27.9x8.4	P85


Notes:

- $\ensuremath{\textcircled{O}}$ Please refer to the part number structure for additional options and complete ordering part numbers.
- ② Ripple and Noise is shown at 20 MHz bandwidth.
- ③ All specifications are at nominal line voltage and full load, +25 °C. unless otherwise noted. See detailed specifications for full conditions.

Output capacitors are 1 μF ceramic in parallel with 10 μF electrolytic. The input cap is 4.7 μF ceramic, low ESR.

I/O caps are necessary for our test equipment and may not be needed for your application.

Minimum load is 10% for rated specifications.

⁽¹⁾Special quantity order is required; samples available with standard pin length only.

©SMT (M) versions not available in sample quantities.

③Some model number combinations may not be available. See website or contact your local Murata sales representative.

*See www.murata.com/products/power for model-specific availability.

UEI25 Series

Single Output Isolated 25-Watt DC/DC Converters

FUNCTIONAL SPECIFICATIONS - MODEL UEI25-033-D48

ABSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
nput Voltage, Continuous	Full power operation	0		80	Vdc
nput Voltage, Transient	Operating or non-operating, 100 mS max. duration	0		100	Vdc
solation Voltage	Input to output			2250	Vdc
nput Reverse Polarity	None, install external fuse		None		Vdc
n/Off Remote Control	Power on or off, referred to -Vin	0		15	Vdc
Output Power	Power			25.25	W
Dutput Current	Current-limited, no damage, short-circuit protected	0		7.5	A
Storage Temperature Range	Vin = Zero (no power)	-55		125	J°
	re of devices to greater than any of these conditions may adv		reliability Proper operation up		-
he Performance/Functional Specifications Tabl		orbory anoor long torn	reliability. Topor operation an		
INPUT					
Operating voltage range		36	48	75	Vdc
Recommended External Fuse	Fast blow	50	40	1.5	A
Start-up threshold	Rising input voltage	34	35.2	36	Vdc
•					
Jndervoltage shutdown	Falling input voltage	32	34.0	35.2	Vdc
Overvoltage shutdown			None		Vdc
Reverse Polarity Protection	None, install external fuse		None		Vdc
nternal Filter Type			LC		
nput current					
Full Load Conditions	Vin = nominal		0.58	0.60	A
Low Line	Vin = minimum		0.79	0.81	A
Inrush Transient			0.05		A2-Sec.
Output in Short Circuit			50	100	mA
No Load	lout = minimum, unit=0N		75	100	mA
Standby Mode (Off, UV, OT)			1	2	mA
Reflected (back) ripple current @	Measured at input with specified filter		30		mA, RMS
Pre-biased startup	External output voltage < Vset		Monotonic		
GENERAL and SAFETY			Monotorne		
	Vin=48V, full load	87	89.5		%
Efficiency	Vin=36V, full load	86.5	87.5		%
laslation	VIII=SOV, IUII IOdu	00.0	07.3		70
Isolation		0050			1/1
Isolation Voltage	Input to output, continuous	2250			Vdc
Insulation Safety Rating			basic		
Isolation Resistance		10			Mohm
Isolation Capacitance			1000		pF
Safety	Certified to UL-62368-1, CAN/CSA-C22.2 No.62368-1-14, IEC62368-1:2014		Yes		
Calculated MTBF	Per MIL-HDBK-217F, ground benign, Tambient=+30°C		TBD		Hours x 10 ⁶
Calculated MTBF	Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient=+40°C		2		Hours x 10 ⁶
DYNAMIC CHARACTERISTICS					·
Fixed Switching Frequency		300	330	360	KHz
Startup Time	Power On to Vout regulated			50	mS
Startup Time	Remote ON to Vout regulated			50	mS
Dynamic Load Response	50-75-50% load step, settling time to within ±2% of Vout		180	250	μSec
Dynamic load di/dt	or vout			2	A/µSec
Dynamic Load Peak Deviation	same as above		±30	±100	mV
	same as above		±30	±100	111V
FEATURES and OPTIONS					
Remote On/Off Control ④					
"N" suffix			· · · ·		1
Negative Logic, ON state	ON = Ground pin or external voltage	-0.7		1.2	V
Negative Logic, OFF state	OFF = Pin open or external voltage	10		15	V
Control Current			1		mA
"P" suffix	· ·				
Positive Logic, ON state	ON = Pin open or external voltage	10		15	V
U /				1.2	V
Positive Logic, OFF state	()FF = Ground pip or external voltage	-() /			
Positive Logic, OFF state Control Current	OFF = Ground pin or external voltage	-0.7	1	1.2	mA

UEI25 Series

Single Output Isolated 25-Watt DC/DC Converters

FUNCTIONAL SPECIFICATIONS (CONT.) – MODEL UEI25-033-D48

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power	See Derating	0.0	25.0	25.25	W
Voltage	······································				
Nominal Output Voltage	No trim	3.267	3.30	3.333	Vdc
Setting Accuracy	At 50% load	-1		+1	% of Vset.
Output Voltage Range				+10	% of Vnom.
Overvoltage Protection	Via magnetic feedback	4.2	5	5.7	Vdc
Current	•				
Output Current Range		0.7575	7.575	7.575	A
Minimum Load ③			10% minimum load		% of lout
Current Limit Inception	98% of Vnom., after warmup	8.5	10	11	A
Short Circuit			1		
Short Circuit Current	Hiccup technique, autorecovery			0.3	A
Short Circuit Duration (remove short for			Orationary		
recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation (5)			•		,
Line Regulation	Vin=min. to max., Vout=nom., 50% load			±0.1	% of Vout
Load Regulation	lout=min. to max., Vin=48V			±0.2	% of Vout
Ripple and Noise	5 Hz- 20 MHz BW		50	80	mV pk-pk
Temperature Coefficient	At all outputs		0.02		% of Vnom./°C
Maximum Capacitive Loading (10% ceramic,		0		0000	
90% Oscon)	Cap. ESR= $<0.02\Omega$, full resistive load	0		2000	μF
MECHANICAL (Through Hole Models)	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
Outline Dimensions (no baseplate)	C75 case		0.9x1.1x0.33		Inches
(Please refer to outline drawing)	WxLxH		22.86x27.9x8.4		mm
Weight			0.32		Ounces
			9.07		Grams
			9.07		
Through Hole Pin Diameter			0.04		Inches
Through Hole Pin Diameter			0.04 1.016		Inches mm
Through Hole Pin Material			0.04		
	Nickel subplate		0.04 1.016		
Through Hole Pin Material TH Pin Plating Metal and Thickness	Nickel subplate Gold overplate		0.04 1.016 Copper alloy		mm
Through Hole Pin Material	Gold overplate		0.04 1.016 Copper alloy 50		mm µ-inches
Through Hole Pin Material TH Pin Plating Metal and Thickness ENVIRONMENTAL	Gold overplate With derating, 200 LFM	-40	0.04 1.016 Copper alloy 50	85	mm µ-inches µ-inches °C
Through Hole Pin Material TH Pin Plating Metal and Thickness	Gold overplate With derating, 200 LFM No derating, 200 LFM	-40	0.04 1.016 Copper alloy 50	<u>85</u> 70	mm μ-inches μ-inches °C °C
Through Hole Pin Material TH Pin Plating Metal and Thickness ENVIRONMENTAL Operating Ambient Temperature Range Storage Temperature	Gold overplate With derating, 200 LFM		0.04 1.016 Copper alloy 50		mm µ-inches µ-inches °C °C °C
Through Hole Pin Material TH Pin Plating Metal and Thickness ENVIRONMENTAL Operating Ambient Temperature Range	Gold overplate With derating, 200 LFM No derating, 200 LFM	-40	0.04 1.016 Copper alloy 50	70	mm μ-inches μ-inches °C °C
Through Hole Pin Material TH Pin Plating Metal and Thickness ENVIRONMENTAL Operating Ambient Temperature Range Storage Temperature Thermal Protection/Shutdown Electromagnetic Interference	Gold overplate With derating, 200 LFM No derating, 200 LFM Vin = Zero (no power)	-40 -55	0.04 1.016 Copper alloy 50 5	70 125	mm µ-inches µ-inches °C °C °C
Through Hole Pin Material TH Pin Plating Metal and Thickness ENVIRONMENTAL Operating Ambient Temperature Range Storage Temperature Thermal Protection/Shutdown Electromagnetic Interference Conducted, EN55022/CISPR22	Gold overplate With derating, 200 LFM No derating, 200 LFM Vin = Zero (no power) Measured in center	-40 -55	0.04 1.016 Copper alloy 50 5 	70 125	mm µ-inches µ-inches °C °C °C
Through Hole Pin Material TH Pin Plating Metal and Thickness ENVIRONMENTAL Operating Ambient Temperature Range Storage Temperature Thermal Protection/Shutdown Electromagnetic Interference	Gold overplate With derating, 200 LFM No derating, 200 LFM Vin = Zero (no power) Measured in center	-40 -55	0.04 1.016 Copper alloy 50 5 	70 125	mm µ-inches µ-inches °C °C °C °C °C
Through Hole Pin Material TH Pin Plating Metal and Thickness ENVIRONMENTAL Operating Ambient Temperature Range Storage Temperature Thermal Protection/Shutdown Electromagnetic Interference Conducted, EN55022/CISPR22	Gold overplate With derating, 200 LFM No derating, 200 LFM Vin = Zero (no power) Measured in center	-40 -55	0.04 1.016 Copper alloy 50 5 	70 125	mm µ-inches µ-inches °C °C °C °C °C °C °C
Through Hole Pin Material TH Pin Plating Metal and Thickness ENVIRONMENTAL Operating Ambient Temperature Range Storage Temperature Thermal Protection/Shutdown Electromagnetic Interference Conducted, EN55022/CISPR22 Radiated, EN55022/CISPR22	Gold overplate With derating, 200 LFM No derating, 200 LFM Vin = Zero (no power) Measured in center External filter is required	-40 -55 110 	0.04 1.016 Copper alloy 50 5 	70 125 120	mm µ-inches µ-inches °C °C °C °C °C Class Class
Through Hole Pin Material TH Pin Plating Metal and Thickness ENVIRONMENTAL Operating Ambient Temperature Range Storage Temperature Thermal Protection/Shutdown Electromagnetic Interference Conducted, EN55022/CISPR22 Radiated, EN55022/CISPR22 Relative humidity, non-condensing	Gold overplate With derating, 200 LFM No derating, 200 LFM Vin = Zero (no power) Measured in center External filter is required To +85°C	-40 -55 110 	0.04 1.016 Copper alloy 50 5 	70 125 120 90	mm µ-inches µ-inches °C °C °C °C °C Class Class Class %RH

Notes

- \textcircled Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF multi-layer ceramic output capacitors. The external input capacitor is 4.7 μF ceramic. All capacitors are low-ESR types wired close to the converter. These capacitors are necessary for our test equipment and may not be needed in the user's application.
- @ Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is Cbus=220 $\mu F,$ Cin=33 μF and Lbus=12 $\mu H.$
- ③ All models are stable and regulate to specification under minimum (10%) load. Operation under no load will not damage the converter but may increase regulation, output ripple, and noise.
- ④ The Remote On/Off Control is referred to -Vin.
- S Regulation specifications describe the output voltage changes as the line voltage or load current is varied from its nominal or midpoint value to either extreme.

UEI25 Series

Single Output Isolated 25-Watt DC/DC Converters

FUNCTIONAL SPECIFICATIONS - MODEL UEI25-050-D48

ABSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
nput Voltage, Continuous	Full power operation	0		80	Vdc
nput Voltage, Transient	Operating or non-operating, 100 mS max. duration	0		100	Vdc
solation Voltage	Input to output			2250	Vdc
nput Reverse Polarity	None, install external fuse		None		Vdc
n/Off Remote Control	Power on or off, referred to -Vin	0		15	Vdc
Dutput Power		0		25.25	W
Dutput Current	Current-limited, no damage, short-circuit protected	0		5	A
Storage Temperature Range	Vin = Zero (no power)	-55		125	D°
	of devices to greater than any of these conditions may adv		roliability Proper operation up		-
he Performance/Functional Specifications Table is		versely affect long-term	rienability. Froper operation un		an inose nsieu n
INPUT		22	40	75	
Operating voltage range	5.111	36	48	75	Vdc
ecommended External Fuse	Fast blow			1.5	A
itart-up threshold	Rising input voltage	34	35	36	Vdc
Indervoltage shutdown	Falling input voltage	32	33.5	34.5	Vdc
vervoltage shutdown			None		Vdc
Reverse Polarity Protection	None, install external fuse		None		Vdc
nternal Filter Type			LC		
nput current	·		·		
Full Load Conditions	Vin = nominal		0.57	0.59	A
Low Line	Vin = minimum		0.76	0.79	A
Inrush Transient			0.05		A2-Sec.
Output in Short Circuit			50	100	mA
No Load	lout = minimum, unit=0N		30	50	mA
Standby Mode (Off, UV, OT)			1		
			· · ·	3	mA
leflected (back) ripple current ${}^{\textcircled{0}}$	Measured at input with specified filter		30		mA, RMS
Pre-biased startup	External output voltage < Vset		Monotonic		
GENERAL and SAFETY					
Efficiency	Vin=48V, full load	89	91		%
Enclency	Vin=36V, full load	89	91		%
solation					
Isolation Voltage	Input to output, continuous	2250			Vdc
Insulation Safety Rating			basic		
Isolation Resistance		10			Mohm
Isolation Capacitance		10	2000		pF
	Certified to UL-62368-1, CAN/CSA-C22.2		2000		pi
Safety	No.62368-1-14, IEC62368-1:2014		Yes		
Calculated MTBF	Per MIL-HDBK-217F, ground benign,		TBD		Hours x 10 ^e
	Tambient=+30°C				-
Calculated MTBF	Per Telcordia SR332, issue 1, class 3, ground		2		Hours x 10 ⁶
	fixed, Tambient=+40°C		-		
DYNAMIC CHARACTERISTICS					
Fixed Switching Frequency		300	330	360	KHz
Startup Time	Power On to Vout regulated			50	mS
Startup Time	Remote ON to Vout regulated			50	mS
Demonstration of Deservery	50-75-50% load step, settling time to within ±2%		000		0
Dynamic Load Response	of Vout		200		µSec
Dynamic load di/dt				2	A/µSec
Dynamic Load Peak Deviation	same as above		±150		mV
FEATURES and OPTIONS			100		1117
Remote On/Off Control ④					
'N" suffix	011 0 1 1 1 1 1 1	<u> </u>	i i		
gative Logic, ON state ON = Ground pin or external voltage		-0.7 10		0.7	V
				15	V
Negative Logic, OFF state	OFF = PIn open or external voltage				
Negative Logic, OFF state Control Current	OFF = PIN open or external voltage		1		mA
Negative Logic, OFF state Control Current	UFF = Pin open or external voltage		1		mA
Negative Logic, OFF state Control Current 'P" suffix	ON = Pin open or external voltage	10		15	MA V
Negative Logic, OFF state Control Current		10 -0.7		15 0.8	

UEI25 Series

Single Output Isolated 25-Watt DC/DC Converters

FUNCTIONAL SPECIFICATIONS (CONT.) – MODEL UEI25-050-D48

Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units	
See Derating	0.0	25.0	25.25	W	
		· · · · · ·			
No trim	4.95	5.00	5.05	Vdc	
At 50% load	-1		+1	% of Vset.	
User-adiustable	-10		+10	% of Vnom.	
,	6	6.5	7.5	Vdc	
	0	50	5.0	A	
			010	% of lout	
98% of Vnom after warmup	53		73	A	
30% of mont., and warmup	0.0	0.0	1.0	Λ	
Hiccup technique, autorecovery			0.2	А	
			0.5	A	
Output shorted to ground, no damage		Continuous			
Current limiting					
Vin=min to max Vout=nom 50% load			+0.1	% of Vout	
				% of Vout	
		50		mV pk-pk	
			00	% of Vnom./°C	
· · · · · · · · · · · · · · · · · · ·		0.02			
Cap. ESR= $<0.02\Omega$, full resistive load	0		2000	μF	
Conditions ①	Minimum	Typical/Nominal	Maximum	Units	
C75 case		0.96x1.1x0.33		Inches	
WxLxH		24.4x27.9x8.4		mm	
		0.32		Ounces	
		9.07		Grams	
		0.04		Inches	
		1.016		mm	
		Copper allov			
Nickel subplate				µ-inches	
		50			
Gold overplate		5		µ-inches	
Gold overplate	-40		85	-	
Gold overplate With derating, 200 LFM			<u>85</u> 82	μ-inches °C	
Gold overplate With derating, 200 LFM No derating, 200 LFM, full power	-40		82	μ-inches °C °C	
Gold overplate With derating, 200 LFM No derating, 200 LFM, full power No derating	-40 -40		82 105	µ-inches C C C C C C	
Gold overplate With derating, 200 LFM No derating, 200 LFM, full power No derating Vin = Zero (no power)	-40 -40 -55	5	82 105 125	µ-inches C C C C C C C C	
Gold overplate With derating, 200 LFM No derating, 200 LFM, full power No derating Vin = Zero (no power) Measured in center	-40 -40		82 105	µ-inches P C C C C	
Gold overplate With derating, 200 LFM No derating, 200 LFM, full power No derating Vin = Zero (no power)	-40 -40 -55	5	82 105 125	μ-inches °C °C °C °C °C °C	
Gold overplate With derating, 200 LFM No derating, 200 LFM, full power No derating Vin = Zero (no power) Measured in center	-40 -40 -55	5 115 B	82 105 125	μ-inches °C °C °C °C °C °C °C °C	
Gold overplate With derating, 200 LFM No derating, 200 LFM, full power No derating Vin = Zero (no power) Measured in center External filter is required	-40 -40 -55 110	5	82 105 125 120	μ-inches C C C C C C C C C C C C C	
Gold overplate With derating, 200 LFM No derating, 200 LFM, full power No derating Vin = Zero (no power) Measured in center External filter is required To +85°C	-40 -40 -55 110 10	5 115 B	82 105 125 120 90	μ-inches °C	
Gold overplate With derating, 200 LFM No derating, 200 LFM, full power No derating Vin = Zero (no power) Measured in center External filter is required	-40 -40 -55 110	5 115 B	82 105 125 120	μ-inches C C C C C C C C C C C C C C C C C C	
	See Derating No trim At 50% load User-adjustable Via magnetic feedback 98% of Vnom., after warmup Hiccup technique, autorecovery Output shorted to ground, no damage Current limiting Vin=min. to max., Vout=nom., 50% load lout=min. to max., Vin=48V 5 Hz- 20 MHz BW At all outputs Cap. ESR=<0.02Ω, full resistive load	See Derating0.0No trim4.95At 50% load-1User-adjustable-10Via magnetic feedback60098% of Vnom., after warmup5.3Hiccup technique, autorecovery0Output shorted to ground, no damageCurrent limitingVin=min. to max., Vout=nom., 50% loadlout=min. to max., Vin=48V5 Hz- 20 MHz BWAt all outputsCap. ESR=<0.02 Ω , full resistive load0Conditions ①MinimumC75 caseWXLXHUnition in the maxing in the second	See Derating 0.0 25.0 No trim 4.95 5.00 At 50% load -1 1 User-adjustable -10 1 Via magnetic feedback 6 6.5 0 5.0 No minimum load 98% of Vnom., after warmup 5.3 6.8 Hiccup technique, autorecovery Continuous 0 Output shorted to ground, no damage Continuous Continuous Current limiting 50 At all outputs 0.02 Vin=min. to max., Vont=A8V 50 At all outputs 0.02 Cap. ESR=<0.02Ω, full resistive load	See Derating 0.0 25.0 25.25 No trim 4.95 5.00 5.05 At 50% load -1 +1 User-adjustable -10 +10 Via magnetic feedback 6 6.5 7.5 0 5.0 5.0 5.0 10 0 5.0 5.0 0 5.0 5.0 5.0 0 5.0 5.0 5.0 0 5.3 6.8 7.3 Hiccup technique, autorecovery 0.3 0 0 0utput shorted to ground, no damage Continuous	

Notes

- \textcircled Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μ F and 10 μ F multi-layer ceramic output capacitors. The external input capacitor is 4.7 μ F ceramic. All capacitors are low-ESR types wired close to the converter. These capacitors are necessary for our test equipment and may not be needed in the user's application.
- @ Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is Cbus=220 $\mu F,$ Cin=33 μF and Lbus=12 $\mu H.$
- ③ All models are stable and regulate to specification under no load.
- ④ The Remote On/Off Control is referred to -Vin.
- S Regulation specifications describe the output voltage changes as the line voltage or load current is varied from its nominal or midpoint value to either extreme.

UEI25 Series

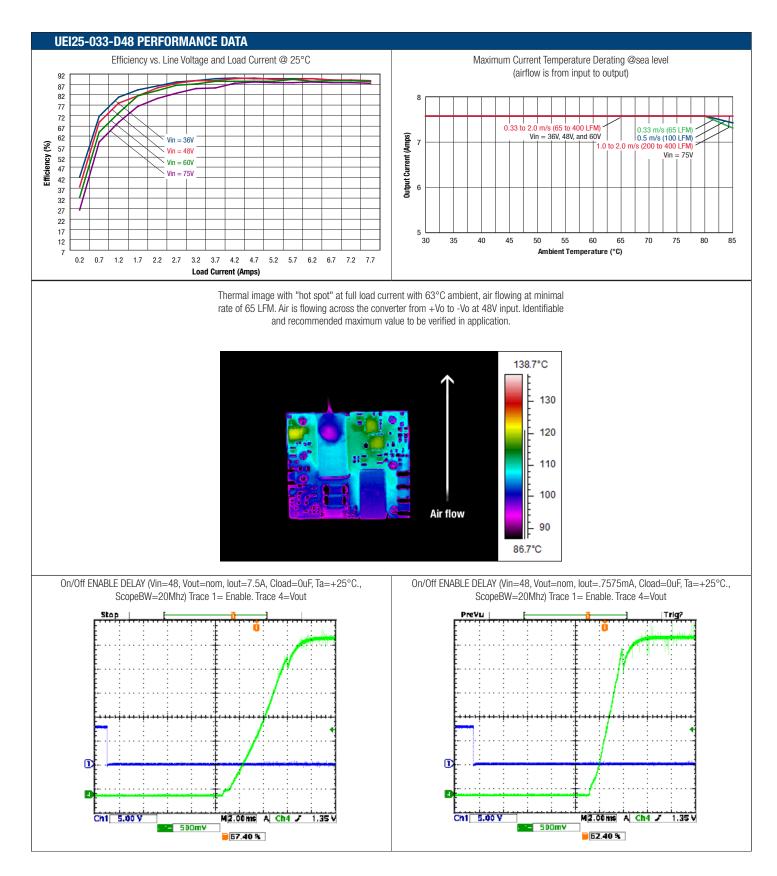
Single Output Isolated 25-Watt DC/DC Converters

FUNCTIONAL SPECIFICATIONS - MODEL UEI25-120-D48

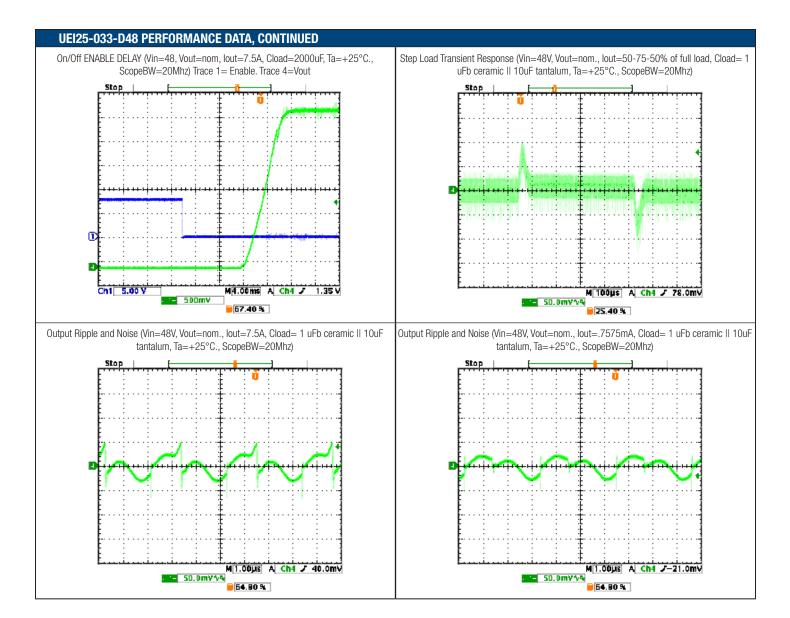
ABSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
nput Voltage, Continuous	Full power operation	0		80	Vdc
nput Voltage, Transient	Operating or non-operating, 100 mS max. duration	0		100	Vdc
solation Voltage	Input to output			2250	Vdc
nput Reverse Polarity	None, install external fuse		None		Vdc
n/Off Remote Control	Power on or off, referred to -Vin	0		15	Vdc
Output Power	ut Power			25	W
Dutput Current	Current-limited, no damage, short-circuit protected	0		2.1	A
Storage Temperature Range	Vin = Zero (no power)	-55		125	°C
	e of devices to greater than any of these conditions may adv		reliability Proper operation up		
ne Performance/Functional Specifications Table		oroony amounting torm	ronability. I topor oporation an		
INPUT					
Derating voltage range		36	48	75	Vdc
Recommended External Fuse	Fast blow	00	-10	1.5	A
Start-up threshold	Rising input voltage	34	35.2	36	Vdc
Indervoltage shutdown	Falling input voltage	32	34.0	35.2	Vdc
		32		30.2	
Vervoltage shutdown	Nexe Sector Level Aven		None		Vdc
Reverse Polarity Protection	None, install external fuse		None		Vdc
nternal Filter Type			capacitive		
nput current			0.005	0.0/=	
Full Load Conditions	Vin = nominal		0.600	0.617	A
Low Line	Vin = minimum		0.809	0.842	A
Inrush Transient			0.05		A2-Sec.
Output in Short Circuit			50	100	mA
No Load	lout = minimum, unit=ON		20	35	mA
Standby Mode (Off, UV, OT)			1	2	mA
leflected (back) ripple current ②	Measured at input with specified filter		30		mA, RMS
Pre-biased startup	External output voltage < Vset		Monotonic		,
GENERAL and SAFETY					
Efficiency	Vin=48V, full load	86.0	87.5		%
solation	VIII—40V, Tuli Ioau	00.0	07.5		/0
Isolation Voltage	Input to output, continuous	2250			Vdc
Insulation Safety Rating	Input to output, continuous	2200	basic		Vuc
		10	DASIC		Mahm
Isolation Resistance		10	1700		Mohm
Isolation Capacitance	0##		1700		pF
Safety	Certified to UL-62368-1, CAN/CSA-C22.2		Yes		
•	No.62368-1-14, IEC62368-1:2014				
Calculated MTBF	Per MIL-HDBK-217F, ground benign,		TBD		Hours x 10 ^e
	Tambient=+30°C				TIGUID X TO
Calculated MTBF	Per Telcordia SR332, issue 1, class 3, ground		2		Hours x 10
	fixed, Tambient=+40°C		L		riours x TU
DYNAMIC CHARACTERISTICS					
Fixed Switching Frequency		295	325	355	KHz
Startup Time	Power On to Vout regulated		10	50	mS
Startup Time	Remote ON to Vout regulated		10	50	mS
•	50-75-50% load step, settling time to within ±1%		100	000	
Dynamic Load Response	of Vout		100	200	µSec
Dynamic load di/dt				1	A/µSec
Dynamic Load Peak Deviation	same as above		±250	±350	mV
FEATURES and OPTIONS					
Remote On/Off Control ④					
N" suffix					
	ON Cround air	07	1	07	11
Negative Logic, ON state	ON = Ground pin or external voltage	-0.7		0.7	V
Negative Logic, OFF state	OFF = Pin open or external voltage	10		15	V
Control Current			1		mA
'P" suffix					
Positive Logic, ON state	ON = Pin open or external voltage	10		15	V
Positive Logic, OFF state	OFF = Ground pin or external voltage	-0.7		0.8	V
Control Current			1		mA

UEI25 Series

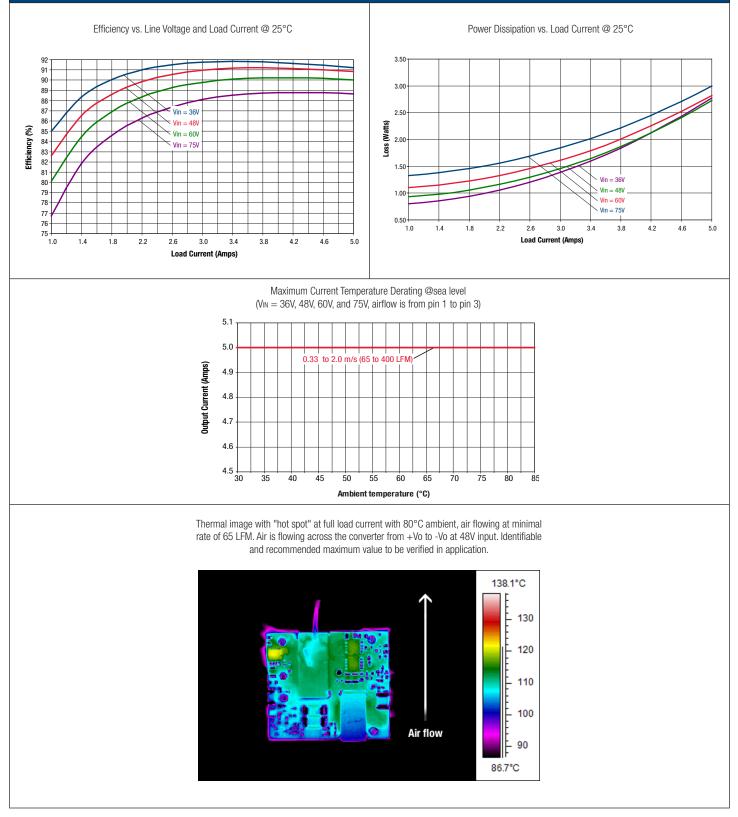
Single Output Isolated 25-Watt DC/DC Converters

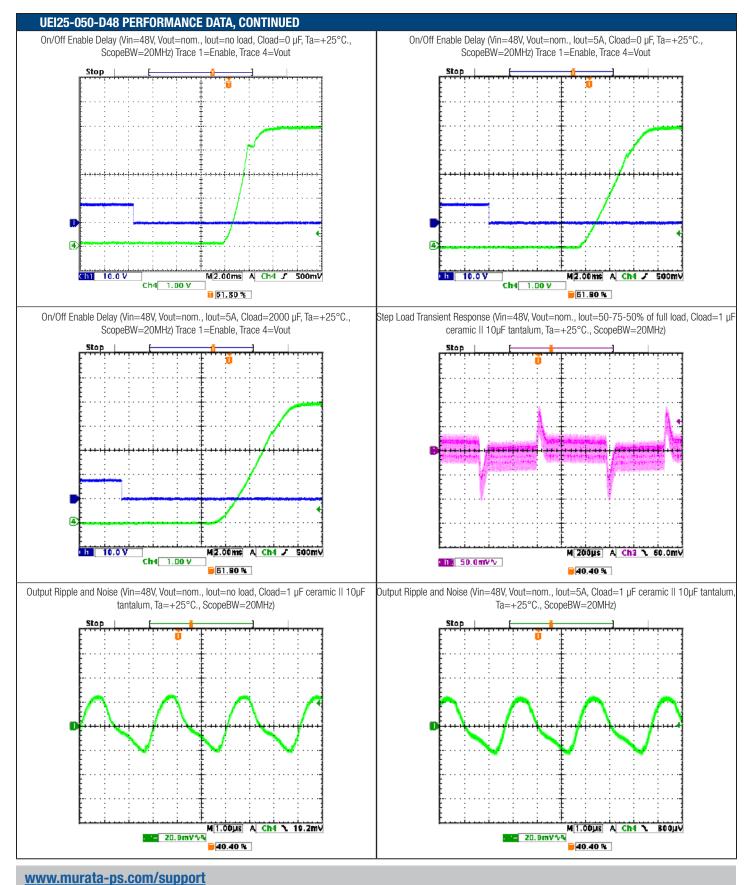

FUNCTIONAL SPECIFICATIONS (CONT.) – MODEL UEI25-120-D48

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power	See Derating	0.0	25.2	25.45	W
Voltage	· · · · · ·				
Nominal Output Voltage	No trim	11.88	12.00	12.12	Vdc
Setting Accuracy	At 50% load	-1		+1	% of Vset.
Output Voltage Range	tput Voltage Range User-adjustable			+10	% of Vnom.
Overvoltage Protection	Via magnetic feedback	14	19	22	Vdc
Current	tha magnoto roododon		10		100
Output Current Range		0.0	2.1	2.1	А
Minimum Load 3			No minimum load		
Current Limit Inception	97% of Vnom., after warmup	2.3	3	3.4	A
Short Circuit	· · · ·				-
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			0.1	A
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation S	· · ·		I		
Line Regulation	Vin=min. to max., Vout=nom., 50% load			±0.075	% of Vout
Load Regulation	lout=min. to max., Vin=48V			±0.05	% of Vout
Ripple and Noise	5 Hz- 20 MHz BW		95	120	mV pk-pk
Temperature Coefficient	At all outputs		0.02		% of Vnom./°C
Maximum Capacitive Loading (10% ceramic,		_			
90% Oscon)	Cap. ESR= $<0.02\Omega$, full resistive load	0		470	μF
MECHANICAL (Through Hole Models)	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
Outline Dimensions (no baseplate)	C75 case		0.96x1.1x0.33		Inches
(Please refer to outline drawing)	WxLxH		24.38x27.94x8.43		mm
Weight			0.32		Ounces
			9.07		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range					
Operating Amplent Temperature hange	With derating, 200 LFM	-40		85	°C
Storage Temperature	With derating, 200 LFM Vin = Zero (no power)	-40 -55		85 125	0° 0°
			135		
Storage Temperature	Vin = Zero (no power)	-55	135	125	°C
Storage Temperature Thermal Protection/Shutdown	Vin = Zero (no power) Measured at hotspot	-55	135 B	125	°C
Storage Temperature Thermal Protection/Shutdown Electromagnetic Interference	Vin = Zero (no power) Measured at hotspot	-55		125	0° 0°
Storage Temperature Thermal Protection/Shutdown Electromagnetic Interference Conducted, EN55022/CISPR22	Vin = Zero (no power) Measured at hotspot	-55	В	125	°C °C Class
Storage Temperature Thermal Protection/Shutdown Electromagnetic Interference Conducted, EN55022/CISPR22 Radiated, EN55022/CISPR22	Vin = Zero (no power) Measured at hotspot External filter is required	-55 130	В	125 150	°C °C Class Class
Storage Temperature Thermal Protection/Shutdown Electromagnetic Interference Conducted, EN55022/CISPR22 Radiated, EN55022/CISPR22 Relative humidity, non-condensing	Vin = Zero (no power) Measured at hotspot External filter is required To +85°C	-55 130 10	В	125 150 90	°C °C Class Class Class %RH


Notes

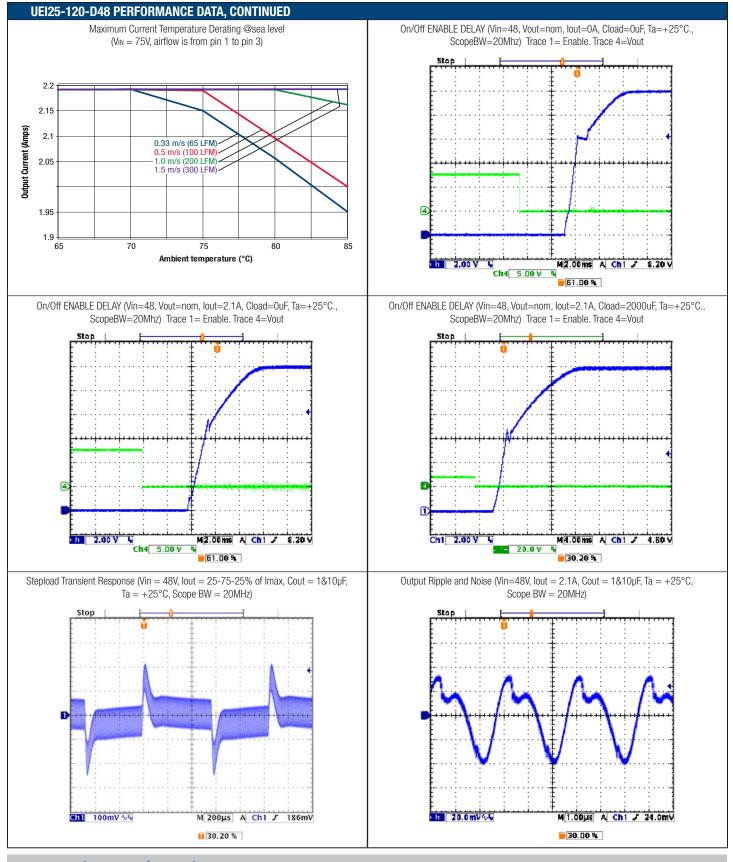
- \textcircled Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF multi-layer ceramic output capacitors. The external input capacitor is 4.7 μF ceramic. All capacitors are low-ESR types wired close to the converter. These capacitors are necessary for our test equipment and may not be needed in the user's application.
- ② Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is Cbus=220 µF, Cin=33 µF and Lbus=12 µH.
- ③ All models are stable and regulate to specification under no load.
- ④ The Remote On/Off Control is referred to -Vin.
- S Regulation specifications describe the output voltage changes as the line voltage or load current is varied from its nominal or midpoint value to either extreme.





Single Output Isolated 25-Watt DC/DC Converters

UEI25 Series

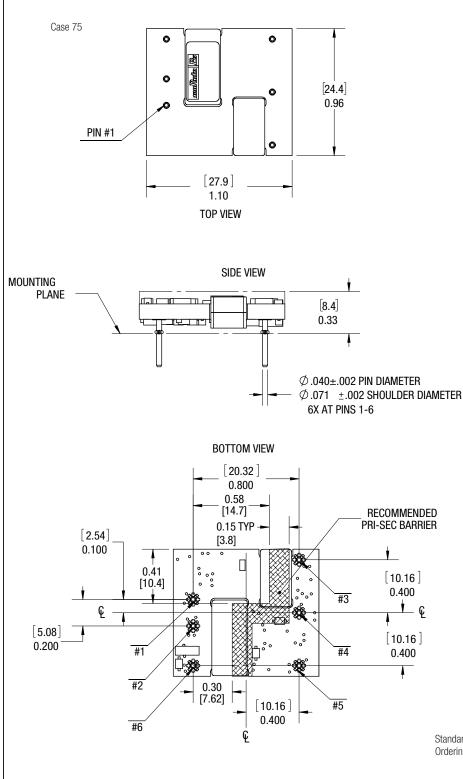

UEI25-120-D48 PERFORMANCE DATA Efficiency vs. Line Voltage and Load Current @ 25°C Power Dissipation vs. Load Current @ 25°C 89 4.46 88 3.96 87 3.46 86 2.96 s (Watts) 85 Vin = 36VEfficiency (%) Vin = 48V84 2.46 Vin = 60VLoss 83 Vin = 75V1.9 Vin = 36V82 Vin = 48V 14 Vin = 60V 81 Vin = 75V 0.96 80 79 0.46 0.6 0.8 0.9 1.3 1.6 1.8 1.9 2.1 0.4 1.1 1.4 78 Load Current (Amps) 0.4 0.6 0.8 0.9 1.1 1.3 1.4 1.6 1.8 1.9 2.1 Load Current (Amps) Maximum Current Temperature Derating @sea level Maximum Current Temperature Derating @sea level $(V_{IN} = 36V, airflow is from pin 1 to pin 3)$ $(V_{IN} = 48V, airflow is from pin 1 to pin 3)$ 2.25 2.2 2.175 22 2.15 2.15 Output Current (Amps) (Amps) 0.33 m/s (65 LFM) -0.5 m/s (100 LFM) -1.0 m/s (200 LFM) -0.33 m/s (65 LFM) 2.125 0.5 m/s (100 LFM) * 1.0 m/s (200 LFM) * 1.5 m/s (300 LFM) * 2.1 Current 2.1 2.05 Output 2.075 2.0 2.05 1.95 2.025 1.9 2 65 70 75 80 85 65 70 75 80 85 Ambient temperature (°C) Ambient temperature (°C) Maximum Current Temperature Derating @sea level Thermal image with "hot spot" at full load current with 65°C ambient, air flowing at minimal rate of 65 LFM. Air is flowing across the converter from +Vo to -Vo at 48V input. Identifiable $(V_{IN} = 60V, airflow is from pin 1 to pin 3)$ and recommended maximum value to be verified in application. 137.2°C 2.2 2.175 130 2.15 Output Current (Amps) 0.33 m/s (65 LFM) 2.125 120 0.5 m/s (100 LFM) 1.0 m/s (200 LFM) 2.1 110 2.075 2 05 100 2.025 Air flow 2 90 65 70 75 80 85 Ambient temperature (°C) 85.9°C

www.murata-ps.com/support

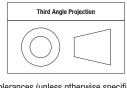
MDC_UEI25W.B12 Page 13 of 24

muRata Ps Murata Power Solutions

Single Output Isolated 25-Watt DC/DC Converters



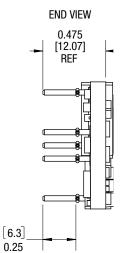
www.murata-ps.com/support



Single Output Isolated 25-Watt DC/DC Converters

MECHANICAL SPECIFICATIONS, OPEN FRAME THROUGH-HOLE MOUNT

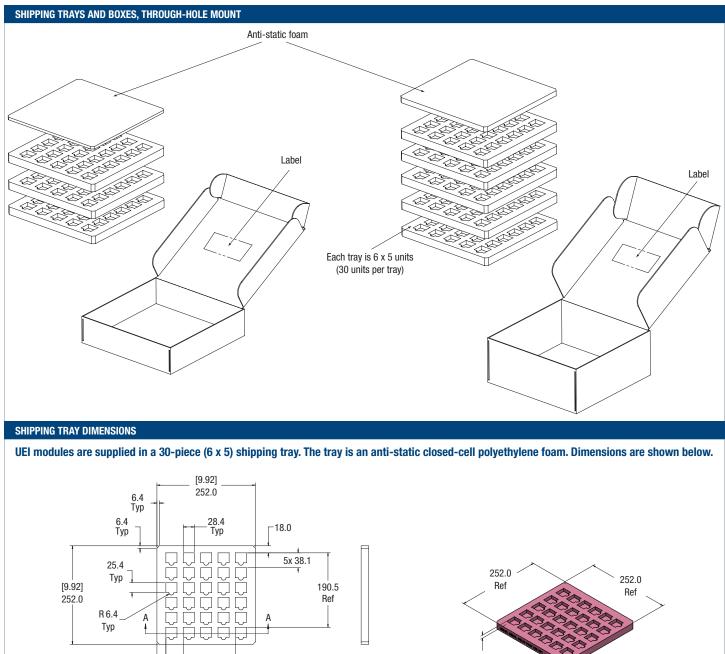
Dimensions are in inches (mm shown for ref. only).

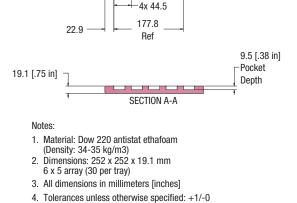


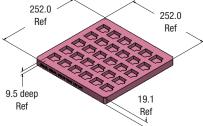
Tolerances (unless otherwise specified): .XX \pm 0.02 (0.5) .XXX \pm 0.010 (0.25) Angles \pm 1°

Components are shown for reference only.

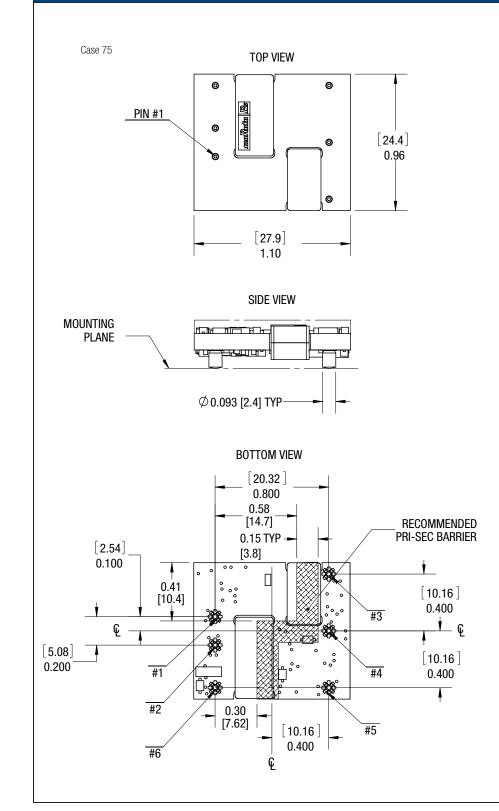
INPUT/	INPUT/OUTPUT CONNECTIONS					
Pin	Function P85					
1	+Vin					
2	-Vin					
3	+Vout					
4	Output Trim					
5	-Vout					
6	On/Off Control*					
*The Rem	*The Remote On/Off can be provided					
with eithe	r positive (P suffix) or nega-					
tive (N sut	ffix) logic					


These converters are plug-compatible to competitive units. In case of pinout numbering inconsistency, follow the pin FUNCTION, not the pin number when laying out your PC board.

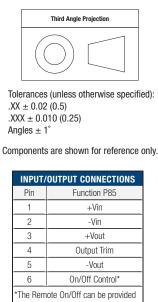



Standard pin length is shown. Please refer to the Ordering Guide for alternate pin lengths.

Single Output Isolated 25-Watt DC/DC Converters

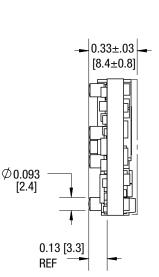

www.murata-ps.com/support

MDC_UEI25W.B12 Page 16 of 24


UEI25 Series

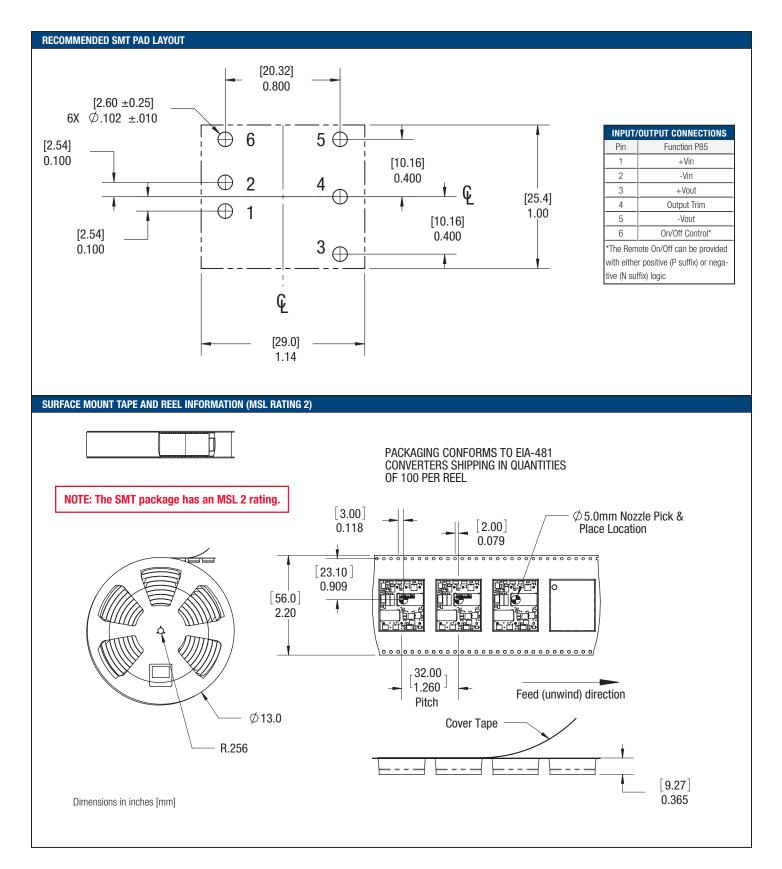
Single Output Isolated 25-Watt DC/DC Converters

MECHANICAL SPECIFICATIONS, SURFACE MOUNT (MSL RATING 2)



Dimensions are in inches (mm shown for ref. only).

These converters are plug-compatible to competitive units. In case of pinout numbering inconsistency, follow the pin FUNCTION, not the pin number when laying out your PC board.


with either positive (P suffix) or nega-

END VIEW

tive (N suffix) logic

UEI25 Series

Single Output Isolated 25-Watt DC/DC Converters

TECHNICAL NOTES

Input Fusing

Certain applications and/or safety agencies may require fuses at the inputs of power conversion components. Fuses should also be used when there is the possibility of sustained input voltage reversal which is not current-limited. For greatest safety, we recommend a fast blow fuse installed in the ungrounded input supply line.

The installer must observe all relevant safety standards and regulations. For safety agency approvals, install the converter in compliance with the end-user safety standard.

Input Reverse-Polarity Protection

If the input voltage polarity is reversed, an internal diode will become forward biased and likely draw excessive current from the power source. If this source is not current-limited or the circuit appropriately fused, it could cause permanent damage to the converter.

Input Under-Voltage Shutdown and Start-Up Threshold

Under normal start-up conditions, converters will not begin to regulate properly until the rising input voltage exceeds and remains at the Start-Up Threshold Voltage (see Specifications). Once operating, converters will not turn off until the input voltage drops below the Under-Voltage Shutdown Limit. Subsequent restart will not occur until the input voltage rises again above the Start-Up Threshold. This built-in hysteresis prevents any unstable on/off operation at a single input voltage.

Users should be aware however of input sources near the Under-Voltage Shutdown whose voltage decays as input current is consumed (such as capacitor inputs), the converter shuts off and then restarts as the external capacitor recharges. Such situations could oscillate. To prevent this, make sure the operating input voltage is well above the UV Shutdown voltage AT ALL TIMES.

Start-Up Delay

Assuming that the output current is set at the rated maximum, the Vin to Vout Start-Up Delay (see Specifications) is the time interval between the point when the rising input voltage crosses the Start-Up Threshold and the fully loaded regulated output voltage enters and remains within its specified regulation band. Actual measured times will vary with input source impedance, external input capacitance, input voltage slew rate and final value of the input voltage as it appears at the converter.

These converters include a soft start circuit to moderate the duty cycle of the PWM controller at power up, thereby limiting the input inrush current.

The On/Off Remote Control interval from inception to Vout regulated assumes that the converter already has its input voltage stabilized above the Start-Up Threshold before the On command. The interval is measured from the On command until the output enters and remains within its specified regulation band. The specification assumes that the output is fully loaded at maximum rated current.

Input Source Impedance

These converters will operate to specifications without external components, assuming that the source voltage has very low impedance and reasonable input voltage regulation. Since real-world voltage sources have finite impedance, performance is improved by adding external filter components. Sometimes only a small ceramic capacitor is sufficient. Since it is difficult to totally characterize all applications, some experimentation may be needed. Note that external input capacitors must accept high speed switching currents.

Because of the switching nature of DC/DC converters, the input of these converters must be driven from a source with both low AC impedance and adequate DC input regulation. Performance will degrade with increasing input inductance. Excessive input inductance may inhibit operation. The DC input regulation specifies that the input voltage, once operating, must never degrade below the Shut-Down Threshold under all load conditions. Be sure to use adequate trace sizes and mount components close to the converter.

I/O Filtering, Input Ripple Current and Output Noise

All models in this converter series are tested and specified for input reflected ripple current and output noise using designated external input/output components, circuits and layout as shown in the figures below. External input capacitors (CIN in the figure) serve primarily as energy storage elements, minimizing line voltage variations caused by transient IR drops in the input conductors. Users should select input capacitors for bulk capacitance (at appropriate frequencies), low ESR and high RMS ripple current ratings. In the figure below, the CBUS and LBUS components simulate a typical DC voltage bus. Your specific system configuration may require additional considerations. Please note that the values of CIN, LBUS and CBUS may vary according to the specific converter model.

In critical applications, output ripple and noise (also referred to as periodic and random deviations or PARD) may be reduced by adding filter elements such as

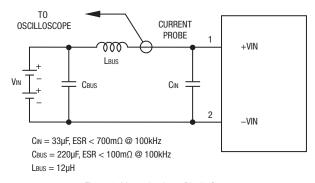


Figure 2. Measuring Input Ripple Current

multiple external capacitors. Be sure to calculate component temperature rise from reflected AC current dissipated inside capacitor ESR.

Floating Outputs

Since these are isolated DC/DC converters, their outputs are "floating" with respect to their input. The essential feature of such isolation is ideal ZERO CURRENT FLOW between input and output. Real-world converters however do exhibit tiny leakage currents between input and output (see Specifications). These leakages consist of both an AC stray capacitance coupling component and a DC leakage resistance. When using the isolation feature, do not allow the isolation voltage to exceed specifications. Otherwise the converter may be damaged. Designers will normally use the negative output (-Output) as the ground return of the load circuit. You can however use the positive output (+Output) as the ground return to effectively reverse the output polarity.

+VOUT C1 C2 SCOPE RI OAD -VOUT $C1 = 1\mu F$ $C2 = 10 \mu F$ LOAD 2-3 INCHES (51-76mm) FROM MODULE

Figure 3. Measuring Output Ripple and Noise (PARD)

Minimum Output Loading Requirements

These converters employ a synchronous rectifier design topology. All models regulate within specification and are stable from 0% load to full load conditions, unless otherwise specified. Operation under no load will not damage the converter but might, however, slightly increase regulation, output ripple, and noise.

Thermal Shutdown

To protect against thermal over-stress, these converters include thermal shutdown circuitry. If environmental conditions cause the temperature of the DC/DC's to rise above the Operating Temperature Range up to the shutdown temperature, an on-board electronic temperature sensor will power down the unit. When the temperature decreases below the turn-on threshold, the converter will automatically restart. There is a small amount of hysteresis to prevent rapid on/off cycling. CAUTION: If you operate too close to the thermal limits, the converter may shut down suddenly without warning. Be sure to thoroughly test your application to avoid unplanned thermal shutdown.

Temperature Derating Curves

The graphs in the performance data section illustrate typical operation under a variety of conditions. The Derating curves show the maximum continuous ambient air temperature and decreasing maximum output current which is acceptable under increasing forced airflow measured in Linear Feet per Minute ("LFM"). Note that these are AVERAGE measurements. The converter will accept brief increases in temperature and/or current or reduced airflow as long as the average is not exceeded.

Note that the temperatures are of the ambient airflow, not the converter itself which is obviously running at higher temperature than the outside air. Also note that "natural convection" is defined as very low flow rates which are not using fanforced airflow. Depending on the application, "natural convection" is usually about 30-65 LFM but is not equal to still air (0 LFM).

Murata Power Solutions makes Characterization measurements in a closed cycle wind tunnel with calibrated airflow. We use both thermocouples and an infrared camera system to observe thermal performance. As a practical matter, it is quite difficult to insert an anemometer to precisely measure airflow in most applications. Sometimes it is possible to estimate the effective airflow if you thoroughly understand the enclosure geometry, entry/exit orifice areas and the fan flowrate specifications.

CAUTION: If you exceed these Derating guidelines, the converter may have an unplanned Over Temperature shut down. Also, these graphs are all collected near Sea Level altitude. Be sure to reduce the derating for higher altitude.

Single Output Isolated 25-Watt DC/DC Converters

Output Overvoltage Protection (OVP)

This converter monitors its output voltage for an over-voltage condition using an on-board electronic comparator. The signal is optically coupled to the primary side PWM controller. If the output exceeds OVP limits, the sensing circuit will power down the unit, and the output voltage will decrease. After a time-out period, the PWM will automatically attempt to restart, causing the output voltage to ramp up to its rated value. It is not necessary to power down and reset the converter for this automatic OVP-recovery restart.

If the fault condition persists and the output voltage climbs to excessive levels, the OVP circuitry will initiate another shutdown cycle. This on/off cycling is referred to as "hiccup" mode.

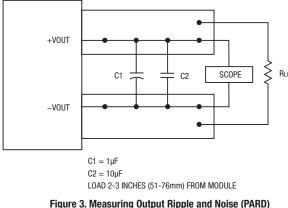
Output Fusing

The converter is extensively protected against current, voltage and temperature extremes. However, your application circuit may need additional protection. In the extremely unlikely event of output circuit failure, excessive voltage could be applied to your circuit. Consider using an appropriate external protection.

Output Current Limiting

As soon as the output current increases to approximately its overcurrent limit, the DC/ DC converter will enter a current-limiting mode. The output voltage will decrease proportionally with increases in output current, thereby maintaining a somewhat constant power output. This is commonly referred to as power limiting.

Current limiting inception is defined as the point at which full power falls below the rated tolerance. See the Performance/Functional Specifications. Note particularly that the output current may briefly rise above its rated value. This enhances reliability and continued operation of your application. If the output current is too high, the converter will enter the short circuit condition.


Output Short Circuit Condition

When a converter is in current-limit mode, the output voltage will drop as the output current demand increases. If the output voltage drops too low, the magnetically coupled voltage used to develop PWM bias voltage will also drop, thereby shutting down the PWM controller. Following a time-out period, the PWM will restart, causing the output voltage to begin rising to its appropriate value. If the short-circuit condition persists, another shutdown cycle will initiate. This on/off cycling is called "hiccup mode." The hiccup cycling reduces the average output current, thereby preventing excessive internal temperatures.

Trimming the Output Voltage

The Trim input to the converter allows the user to adjust the output voltage over the rated trim range (please refer to the Specifications). In the trim equations and circuit diagrams that follow, trim adjustments use a single fixed resistor connected between the Trim input and either Vout pin. Trimming resistors should have a low temperature coefficient (±100 ppm/°C or less) and be mounted close to the converter. Keep leads short. If the trim function is not used, leave the trim unconnected. With no trim. the converter will exhibit its specified output voltage accuracy.

There are two CAUTIONs to observe for the Trim input:

UEI25 Series

Single Output Isolated 25-Watt DC/DC Converters

CAUTION: To avoid unplanned power down cycles, do not exceed EITHER the maximum output voltage OR the maximum output power when setting the trim. If the output voltage is excessive, the OVP circuit may inadvertantly shut down the converter. If the maximum power is exceeded, the converter may enter current limiting. If the power is exceeded for an extended period, the converter may overheat and encounter overtemperature shut down.

CAUTION: Be careful of external electrical noise. The Trim input is a sensitve input to the converter's feedback control loop. Excessive electrical noise may cause instability or oscillation. Keep external connections short to the Trim input. Use shielding if needed.

Trim Equations

Trim Up **Trim Down** UEI25-033-D48 5110 x (Vo -2.5) 12775 2050 $R_{T_{UP}}(\Omega) =$ 2050 $R_{T_{DOWN}}(\Omega) =$ $3.3 - V_0$ $V_0 - 3.3$ UEI25-050-D48 5110 x (Vo -2.5) 12775 $R_{T_{DOWN}}(\Omega) =$ 2050 2050 $R_{T_{UP}}(\Omega) =$ $V_0 - 5$ $5 - V_0$ UEI25-120-D48 10000 (Vo-2.5) 25000 $R_{T_{UP}}(\Omega) =$ 5110 $R_{T_{DOWN}}(\Omega) =$ 5110 $V_0 - 12$ $12 - V_0$

<Connect trim resistor <Connect trim resistor between Trim and -Vout> between Trim and +Vout>

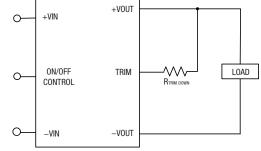
Where Vo = Desired output voltage. Adjustment accuracy is subject to resistor tolerances and factory-adjusted output accuracy. Mount trim resistor close to converter. Use short leads.

Remote On/Off Control

On the input side, a remote On/Off Control can be specified with either positive or negative logic as follows:

Positive: Models equipped with Positive Logic are enabled when the On/Off pin is left open or is pulled high to +15Vpc with respect to -ViN. An internal bias current causes the open pin to rise to +V_{IN}. Positive-logic devices are disabled when the On/Off is grounded or brought to within a low voltage (see Specifications) with respect to -VIN.

Negative: Models with negative logic are on (enabled) when the On/Off is grounded or brought to within a low voltage (see Specifications) with respect to -VIN. The device is off (disabled) when the On/Off is left open or is pulled high to +15Vpc Max. with respect to -ViN.


Dynamic control of the On/Off function should be able to sink the specified signal current when brought low and withstand specified voltage when brought high. Be aware too that there is a finite time in milliseconds (see Specifications) between

the time of On/Off Control activation and stable, regulated output. This time will vary slightly with output load type and current and input conditions.

There are two CAUTIONs for the On/Off Control:

CAUTION: While it is possible to control the On/Off with external logic if you carefully observe the voltage levels, the preferred circuit is either an open drain/ open collector transistor or a relay (which can thereupon be controlled by logic). The On/Off prefers to be set at approx. +15V (open pin) for the ON state, assuming positive logic.

CAUTION: Do not apply voltages to the On/Off pin when there is no input power voltage. Otherwise the converter may be permanently damaged.

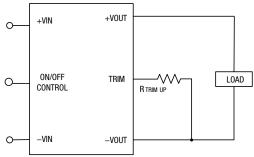


Figure 4. Trim adjustments to decrease Output Voltage using a Fixed Resistor

Figure 5. Trim adjustments to increase Output Voltage using a Fixed Resistor

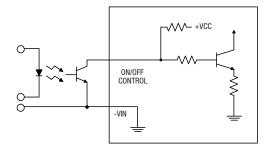


Figure 6. Driving the On/Off Control Pin (suggested circuit)

UEI25 Series

Single Output Isolated 25-Watt DC/DC Converters

Emissions Performance

Murata Power Solutions measures its products for radio frequency emissions against the EN 55022 and CISPR 22 standards. Passive resistance loads are employed and the output is set to the maximum voltage. If you set up your own emissions testing, make sure the output load is rated at continuous power while doing the tests.

The recommended external input and output capacitors (if required) are included. Please refer to the fundamental switching frequency. All of this information is listed in the Product Specifications. An external discrete filter is installed and the circuit diagram is shown below.

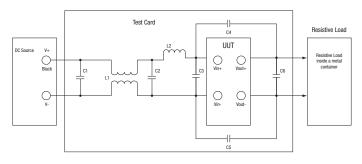
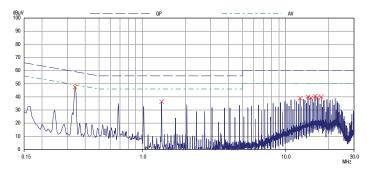
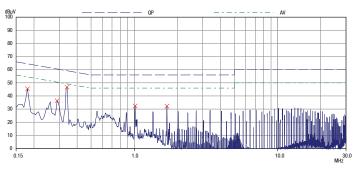


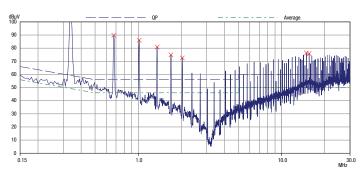
Figure 7. Conducted Emissions Test Circuit

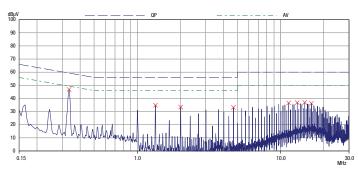

[1] Conducted Emissions Parts List

Reference	Part Number	Description	Vendor
L1	PE-62913	1 mH, 6A	Pulse
L2	NC	4.7uH, 3.6A	Murata
C1, C2	VZ Series	Electrolytic Capacitor 22ufd, 100V	Panasonic
C3	VZ Series	Qty 2 - Electrolytic Capacitor 22ufd, 100V	Panasonic
C4, C5	Unknown	3.3nF, 1500V	Unknown
C6	VZ Series	Electrolytic Capacitor 22ufd, 100V	Panasonic


[2] Conducted Emissions Test Equipment Used

- Rohde & Schwarz EMI Test Receiver (9KHz 1000MHz) ESPC
- Rohde & Schwarz Software ESPC-1 Ver. 2.20
- OHMITE 25W 1 Ohm resistor combinations
- DC Source Programmable DC Power Supply Model 62012P-100-50


[3] Conducted Emissions Test Results


Graph 1. Conducted emissions performance with filter, Negative Line, CISPR 22, Class B, full load, for UEI25-033-D48PM-C

Graph 2. Conducted emissions performance with filter, Negative Line, CISPR 22, Class B, full load, for UEI25-050-D48NM-C

Graph 3. Conducted emissions performance without filter, Negative Line, CISPR 22, Class B, full load, for UEI25-050-D48NM-C

Graph 4. Conducted emissions performance with filter, Negative Line, CISPR 22, Class B, full load, for UEI25-120-D48P-C

[4] Layout Recommendations

Most applications can use the filtering which is already installed inside the converter or with the addition of the recommended external capacitors. For greater emissions suppression, consider additional filter components and/or shielding. Emissions performance will depend on the user's PC board layout, the chassis shielding environment and choice of external components.

Since many factors affect both the amplitude and spectra of emissions, we recommend using an engineer who is experienced at emissions suppression.

UEI25 Series

Single Output Isolated 25-Watt DC/DC Converters

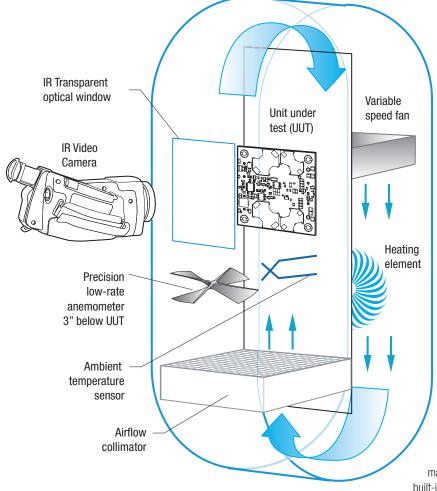


Figure 8. Vertical Wind Tunnel

Vertical Wind Tunnel

Murata Power Solutions employs a computer controlled custom-designed closed loop vertical wind tunnel, infrared video camera system, and test instrumentation for accurate airflow and heat dissipation analysis of power products. The system includes a precision low flow-rate anemometer, variable speed fan, power supply input and load controls, temperature gauges, and adjustable heating element.

The IR camera monitors the thermal performance of the Unit Under Test (UUT) under static steady-state conditions. A special optical port is used which is transparent to infrared wavelengths.

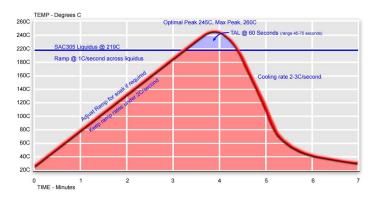
Both through-hole and surface mount converters are soldered down to a host carrier board for realistic heat absorption and spreading. Both longitudinal and transverse airflow studies are possible by rotation of this carrier board since there are often significant differences in the heat dissipation in the two airflow directions. The combination of adjustable airflow, adjustable ambient heat, and adjustable lnput/Output currents and voltages mean that a very wide range of measurement conditions can be studied.

The collimator reduces the amount of turbulence adjacent to the UUT by minimizing airflow turbulence. Such turbulence influences the effective heat transfer characteristics and gives false readings. Excess turbulence removes more heat from some surfaces and less heat from others, possibly causing uneven overheating.

Both sides of the UUT are studied since there are different thermal gradients on each side. The adjustable heating element and fan, built-in temperature gauges, and no-contact IR camera mean that power supplies are tested in real-world conditions.

UEI25 Series

Single Output Isolated 25-Watt DC/DC Converters


Through-hole Soldering Guidelines

Murata Power Solutions recommends the TH soldering specifications below when installing these converters. These specifications vary depending on the solder type. Exceeding these specifications may cause damage to the product. Your production environment may differ; therefore please thoroughly review these quidelines with your process engineers.

Wave Solder Operations for through-hole mounted products (THMT)				
For Sn/Ag/Cu based solders:				
Maximum Preheat Temperature	115° C.			
Maximum Pot Temperature	270° C.			
Maximum Solder Dwell Time	7 seconds			
For Sn/Pb based solders:				
Maximum Preheat Temperature	105° C.			
Maximum Pot Temperature	250° C.			
Maximum Solder Dwell Time	6 seconds			

SMT Reflow Soldering Guidelines

The surface-mount reflow solder profile shown below is suitable for SAC305 type lead-free solders. This graph should be used only as a *guideline*. Many other factors influence the success of SMT reflow soldering. Since your production environment may differ, please thoroughly review these guidelines with your process engineers.

Murata Power Solutions, Inc. 129 Flanders Rd. Westborough, MA 01581, USA. ISO 9001 and 14001 REGISTERED

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>: Refer to: <u>https://www.murata-ps.com/requirements/</u>

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.